Characteristic Function - NayiPathshala

Breaking

Total Pageviews

Loading...

Search Here

3/11/2018

Characteristic Function

Characteristic Function

Given a subset A of a larger set, the characteristic function chi_A, sometimes also called the indicator function, is the function defined to be identically one on A, and is zero elsewhere. Characteristic functions are sometimes denoted using the so-called Iverson bracket, and can be useful descriptive devices since it is easier to say, for example, "the characteristic function of the primes" rather than repeating a given definition. A characteristic function is a special case of a simple function.
The term characteristic function is used in a different way in probability, where it is denoted phi(t) and is defined as the Fourier transform of the probability density function using Fourier transform parameters (a,b)=(1,1),
phi(t)=F_x[P(x)](t)
(1)
=int_(-infty)^inftye^(itx)P(x)dx
(2)
=int_(-infty)^inftyP(x)dx+itint_(-infty)^inftyxP(x)dx+1/2(it)^2int_(-infty)^inftyx^2P(x)dx+...
(3)
=sum_(k=0)^(infty)((it)^k)/(k!)mu_k^'
(4)
=1+itmu_1^'-1/2t^2mu_2^'-1/(3!)it^3mu_3^'+1/(4!)t^4mu_4^'+...,
(5)
where mu_n^' (sometimes also denoted nu_n) is the nth moment about 0 and mu_0^'=1 (Abramowitz and Stegun 1972, p. 928; Morrison 1995).
A statistical distribution is not uniquely specified by its moments, but is by its characteristic function if all of its moments are finite and the series for its characteristic function converges absolutely near the origin (Papoulis 1991, p. 116). In this case, the probability density function is given by
 P(x)=F_t^(-1)[phi(t)](x)=1/(2pi)int_(-infty)^inftye^(-itx)phi(t)dt
(6)
(Papoulis 1991, p. 116).
The characteristic function can therefore be used to generate raw moments,
 phi^((n))(0)=[(d^nphi)/(dt^n)]_(t=0)=i^nmu_n^'
(7)
or the cumulants kappa_n,
 lnphi(t)=sum_(n=0)^inftykappa_n((it)^n)/(n!).

No comments:

Post a Comment