Single Population Variance
The variable has a chi-square distribution if the population variance has a normal distribution. The degrees of freedom are n-1. We can use this to test the population variance under certain conditions
Conditions for testing
- The population has a normal distribution
- The data is from a random sample
- The observations must be independent of each other
- The test statistic has a chi-square distribution with n-1 degrees of freedom and is given by:
Confidence Intervals
If you solve the test statistic formula for the population variance, you get:- Find the two critical values (alpha/2 and 1-alpha/2)
- Compute the value for the population variance given above.
- Place the population variance between the two values calculated in step 2 (put the smaller one first).
No comments:
Post a Comment